Every rational number is
a natural number
a real number
an integer
a whole number
Represent $\sqrt{5}$ on the number line.
Find five rational numbers between $\frac{2}{7}$ and $\frac{2}{5}$
If $x=3+2 \sqrt{2},$ then find the value of $x^{2}+\frac{1}{x^{2}}$ and $x^{3}+\frac{1}{x^{3}}$
Which type of number is number $\pi-$ rational or irrational?
Find the value
$\frac{4}{(216)^{-\frac{2}{3}}}+\frac{1}{(256)^{-\frac{3}{4}}}+\frac{2}{(243)^{-\frac{1}{5}}}$