ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ અને  $P (A -$ નહી અથવા $B-$ નહી $) =$ $\frac {1}{4}$. $A$ અને $B$ નિરપેક્ષ છે કે નહિ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12} \text { and } \mathrm{P}(\text { not } \mathrm{A} \text { or not } \mathrm{B})=\frac{1}{4}$.

$\Rightarrow \mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\frac{1}{4}$

$\Rightarrow P\left((A \cap B)^{\prime}\right)=\frac{1}{4} \quad\left[A^{\prime} \cup B^{\prime}=(A \cap B)^{\prime}\right]$

$\Rightarrow 1-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$

$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{4}$               ........... $(1)$

However, $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=\frac{1}{2} \cdot \frac{7}{12}=\frac{7}{24} $          .......... $(2)$

Here, $\frac{3}{4} \neq \frac{7}{24}$

$\therefore $ $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$

Therefore, $A$ and $B$ are not independent events.

Similar Questions

સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પત્તે રાજા અથવા રાણી છે”. $F : $ ‘પસંદ કરેલ પતું રાણી અથવા ગુલામ છે”.

ધારો કે બે ઘટના $A$ અને  $B$ આપેલ છે કે જેથી બે માંથી માત્ર એક્જ બને તેની સંભાવના $\frac{2}{5}$ હોય અને  $A$ અથવા $B$ ઉદભવે તેની સંભાવના $\frac{1}{2}$ હોય તો બંને એક સાથે ઉદભવે તેની સંભાવના મેળવો.

  • [JEE MAIN 2020]

જો $A$ અને $B$ બે ઘટનાઓ હોય, તો નીચેના પૈકી કઈ સાચી નથી.

$A$ એ સત્ય બોલો તેની સંભાવના $\frac{4}{5}$ છે અને $B$ એ સત્ય બોલે તેની સંભાવના $\frac{3}{4}$ છે,તો એક સત્ય વિધાન વિશે બંને ને બોલવાનુ કહેતા બંનેમાં વિરોધાભાસ થાય તેની સંભાવના મેળવો.

  • [AIEEE 2004]

જો ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ અને $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ હોય, તો $P(A -$ નહિ અને $B-$ નહિ) શોધો.