Evaluate $(132)^{2}$ by using suitable identities
$12548$
$17659$
$17424$
$14657$
If $p(x)=x^{2}-4 x+3,$ evaluate $: p(2)-p(-1)+p\left(\frac{1}{2}\right)$
Show that :
$x+3$ is a factor of $69+11 x-x^{2}+x^{3}$.
Evaluate
$(65)^{2}$
Write the coefficient of $x^{2}$ in the following polynomials
$\pi x^{2}-\frac{22}{7} x+3.14$
The zero of polynomial $5 x-10$ is............