Show that :
$x+3$ is a factor of $69+11 x-x^{2}+x^{3}$.
Let $p(x)=69+11 x-x^{2}+x^{3}, g(x)=x+3$.
$g(x)=x+3=0$ gives $x=-3$
$g(x)$ will be a factor of $p(x)$ if $p(-3)=0 \quad$ (Factor theorem)
Now, $\quad p(-3)=69+11(-3)-(-3)^{2}+(-3)^{3}$
$=69-33-9-27$
$=0$
Since, $p(-3)=0,$ So $g ( x )$ is a factor of $p ( x )$
Find the quotient and the remainder when $x^{3}+x^{2}-10 x+8$ is divided by
$x-2$
Factorise $x^{2}-7 x+12$ by using the factor theorem.
Factorise
$\frac{x^{2}}{4}+\frac{3 x y}{5}+\frac{9 y^{2}}{25}$
Evaluate
$(101)^{2}$
Find the zero of the polynomial in each of the following cases
$q(m)=0.3 m-0.15$