Show that :

$x+3$ is a factor of $69+11 x-x^{2}+x^{3}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $p(x)=69+11 x-x^{2}+x^{3}, g(x)=x+3$.

$g(x)=x+3=0$ gives $x=-3$

$g(x)$ will be a factor of $p(x)$ if $p(-3)=0 \quad$ (Factor theorem)

Now, $\quad p(-3)=69+11(-3)-(-3)^{2}+(-3)^{3}$

$=69-33-9-27$

$=0$

Since, $p(-3)=0,$ So $g ( x )$ is a factor of $p ( x )$

Similar Questions

Find the quotient and the remainder when $x^{3}+x^{2}-10 x+8$ is divided by

$x-2$

Factorise $x^{2}-7 x+12$ by using the factor theorem.

Factorise

$\frac{x^{2}}{4}+\frac{3 x y}{5}+\frac{9 y^{2}}{25}$

Evaluate

$(101)^{2}$

Find the zero of the polynomial in each of the following cases

$q(m)=0.3 m-0.15$