Evaluate $\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right)} $

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right) = } \sum\limits_{k = 1}^{11} {\left( 2 \right) + } \sum\limits_{k = 1}^{11} {\left( {{3^k}} \right) = 22 + } \sum\limits_{k = 1}^{11} {{3^k}} $       .........$(1)$

$\sum\limits_{k = 1}^{11} {{3^k} = {3^1} + {3^2} + {3^3} + ........ + {3^{11}}} $

The terms of this sequence $3,3^{2}, 3^{3} \ldots \ldots$ forms a $G.P.$

$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

$\Rightarrow S_{n}=\frac{3\left[(3)^{11}-1\right]}{3-1}$

$\Rightarrow S_{n}=\frac{3}{2}\left(3^{11}-1\right)$

$\therefore \sum\limits_{k = 1}^{11} {{3^k}}  = \frac{3}{2}\left( {{3^{11}} - 1} \right)$

Substituting this value in equation $(1),$ we obtain

$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right) = 22 + \frac{3}{2}\left( {{3^{11}} - 1} \right)} $

Similar Questions

If $a, b, c, d$ and $p$ are different real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ then show that $a, b, c$ and $d$ are in $G.P.$

If every term of a $G.P.$ with positive terms is the sum of its two previous terms, then the common ratio of the series is

Suppose that the sides $a,b, c$ of a triangle $A B C$ satisfy $b^2=a c$. Then the set of all possible values of $\frac{\sin A \cot C+\cos A}{\sin B \cot C+\cos B}$ is

  • [KVPY 2021]

The sum of first three terms of a $G.P.$ is $\frac{13}{12}$ and their product is $-1$ Find the common ratio and the terms.

Which term of the $GP.,$ $2,8,32, \ldots$ up to $n$ terms is $131072 ?$