Electron of mass $m$ and charge $q$ is travelling with a speed along a circular path of radius $r$ at right angles to a uniform magnetic field of intensity $B$. If the speed of the electron is doubled and the magnetic field is halved the resulting path would have a radius
$2\,r$
$4\,r$
$\frac {r}{4}$
$\frac {r}{2}$
Which law is useful to determine relation between current and magnetic fields due to it.
In a chamber, a uniform magnetic field of $6.5 \;G \left(1 \;G =10^{-4} \;T \right)$ is maintained. An electron is shot into the field with a speed of $4.8 \times 10^{6} \;m s ^{-1}$ normal to the field.the radius of the circular orbit of the electron is $4.2 \;cm$. obtain the frequency of revolution of the electron in its circular orbit. Does the answer depend on the speed of the electron? Explain.
$\left(e=1.5 \times 10^{-19} \;C , m_{e}=9.1 \times 10^{-31}\; kg \right)$
An electron is moving along the positive $X$-axis. You want to apply a magnetic field for a short time so that the electron may reverse its direction and move parallel to the negative $X$-axis. This can be done by applying the magnetic field along
A particle of mass $m = 1.67 \times 10^{-27}\, kg$ and charge $q = 1.6 \times 10^{-19} \, C$ enters a region of uniform magnetic field of strength $1$ $tesla$ along the direction shown in the figure. the time spent by the particle in the magnetic field is......$ns$
The time period of a charged particle undergoing a circular motion in a uniform magnetic field is independent of its