विद्युत विभव निम्न समीकरण द्वारा दिया गया है
$V = 6x - 8x{y^2} - 8y + 6yz - 4{z^2}$
तो मूल बिन्दु पर रखे $2\,C$ के आवेश पर लगने वाला बल......$N$ होगा
$2$
$6$
$8$
$20$
मुक्त आकाश में एक बिन्दु पर आवेश $Q$ कूलाम्ब के कारण विभव $Q \times 10^{11}$ वोल्ट है। इस बिन्दु पर विधुतीय क्षेत्र होगा-
किसी बिन्दु आवेश से एक निश्चित दूरी पर विद्युत क्षेत्र $500\,V/m$ तथा विभव $3000\,V$ है। यह निश्चित दूरी .......$m$ है
किसी गोलाकार आवेशित गेंद के लिए गेंद के अंदर स्थित वैद्युत विभव का मान $r$ के साथ $V=2 a r^2+b$ के अनुसार परिवर्तित होता है: यहाँ, $a$ एवं $b$ स्थिरांक है, तथा $r$ केन्द्र से दूरी है। गेंद के अंदर आयतन आवेश घनत्व $-\lambda \mathrm{a} \varepsilon$ है। $\lambda$ का मान _____________ होगा। $\varepsilon=$ माध्यम की विद्युतशीलता
आवेश-घनत्व $\rho(r)$ के किसी गोलीय-आवेश-वितरण, के अन्दर $N$ समविभव-पृष्ठ, जिनकी विभव है $V _{0}, V _{0}+\Delta V , V _{0}+2 \Delta V , \ldots \ldots V _{0}+ N \Delta V$ $(\Delta V >0)$, आरेखित किये गये हैं और उनकी त्रिज्याऐं क्रमश: $r_{0}, r_{1}, r_{2}, \ldots \ldots \ldots . . r_{N}$ हैं। यदि त्रिज्याओं का अन्तराल, सभी $V _{0}$ तथा $\Delta V$ के मानों के लिये, स्थिर है तब
यदि किसी क्षेत्र में विभव (वोल्ट में) $V ( x , y , z )=6 xy -y +2 yz ,$ से निर्दिप्ट किया जाये तो बिन्दु $(1,1,0)$ पर विधुत क्षेत्र $(N/C$ में$)$ है :