Electric flux through surface $s_1$

818-746

  • A

     is minimum

  • B

    is maximum

  • C

    equal to $s_2$ but less than $s_4$

  • D

    equal for all surfaces

Similar Questions

Two charged thin infinite plane sheets of uniform surface charge density $\sigma_{+}$ and $\sigma_{-}$ where $\left|\sigma_{+}\right|>\left|\sigma_{-}\right|$ intersect at right angle. Which of the following best represents the electric field lines for this system

  • [JEE MAIN 2020]

The electric field in a region is given $\overrightarrow{ E }=\left(\frac{3}{5} E _{0} \hat{ i }+\frac{4}{5} E _{0} \hat{ j }\right) \frac{ N }{ C } .$ The ratio of flux of reported field through the rectangular surface of area $0.2\, m ^{2}$ (parallel to $y - z$ plane) to that of the surface of area $0.3\, m ^{2}$ (parallel to $x - z$ plane $)$ is $a : b ,$ where $a =$ .............

[Here $\hat{ i }, \hat{ j }$ and $\hat{ k }$ are unit vectors along $x , y$ and $z-$axes respectively]

  • [JEE MAIN 2021]

A square surface of side $L$ meter in the plane of the paper is placed in a uniform electric field $E(volt/m)$ acting along the same plane at an angle $\theta$ with the horizontal side of the square as shown in figure.The electric flux linked to the surface, in units of $volt \;m $

  • [AIPMT 2010]

Write Gauss’s law and give its expression.

A circular disc of radius $R$ carries surface charge density $\sigma(r)=\sigma_0\left(1-\frac{r}{R}\right)$, where $\sigma_0$ is a constant and $r$ is the distance from the center of the disc. Electric flux through a large spherical surface that encloses the charged disc completely is $\phi_0$. Electric flux through another spherical surface of radius $\frac{R}{4}$ and concentric with the disc is $\phi$. Then the ratio $\frac{\phi_0}{\phi}$ is. . . . . .

  • [IIT 2020]