A square surface of side $L$ meter in the plane of the paper is placed in a uniform electric field $E(volt/m)$ acting along the same plane at an angle $\theta$ with the horizontal side of the square as shown in figure.The electric flux linked to the surface, in units of $volt \;m $
$EL^2$
$EL^2\, cos$ $\theta $
$EL^2\, sin$$\theta $
zero
Consider the charge configuration and spherical Gaussian surface as shown in the figure. When calculating the flux of the electric field over the spherical surface the electric field will be due to
A cube is placed inside an electric field, $\overrightarrow{{E}}=150\, {y}^{2}\, \hat{{j}}$. The side of the cube is $0.5 \,{m}$ and is placed in the field as shown in the given figure. The charge inside the cube is $.....\times 10^{-11} {C}$
Write Gauss’s law and give its expression.
The magnitude of the average electric field normally present in the atmosphere just above the surface of the Earth is about $150\, N/C$, directed inward towards the center of the Earth . This gives the total net surface charge carried by the Earth to be......$kC$ [Given ${\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{C^2}/N - {m^2},{R_E} = 6.37 \times {10^6}\,m$]
Explain electric flux.