Dual of $(x \vee y) \wedge (x \vee 1) = x \vee (x \wedge y) \vee y$ is

  • A

    $(x \wedge y) \vee (x \wedge 0) = x \wedge (x \vee y) \wedge y$

  • B

    $(x \vee y) \vee (x \wedge 1) = x \wedge (x \vee y) \wedge y$

  • C

    $(x \wedge y) \wedge (x \wedge 0) = x \wedge (x \vee y) \wedge y$

  • D

    None of these

Similar Questions

The contrapositive of statement 'If Jaipur is capital of Rajasthan, then Jaipur is in India' is 

$(p\rightarrow q) \leftrightarrow (q \vee  ~ p)$ is

If $q$ is false and $p\, \wedge \,q\, \leftrightarrow \,r$ is true, then which one of the following statements is a tautology?

  • [JEE MAIN 2019]

The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,

$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$

that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to

  • [JEE MAIN 2022]

If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta  \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is 

  • [JEE MAIN 2019]