Dual of $(x \vee y) \wedge (x \vee 1) = x \vee (x \wedge y) \vee y$ is
$(x \wedge y) \vee (x \wedge 0) = x \wedge (x \vee y) \wedge y$
$(x \vee y) \vee (x \wedge 1) = x \wedge (x \vee y) \wedge y$
$(x \wedge y) \wedge (x \wedge 0) = x \wedge (x \vee y) \wedge y$
None of these
The contrapositive of statement 'If Jaipur is capital of Rajasthan, then Jaipur is in India' is
$(p\rightarrow q) \leftrightarrow (q \vee ~ p)$ is
If $q$ is false and $p\, \wedge \,q\, \leftrightarrow \,r$ is true, then which one of the following statements is a tautology?
The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,
$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$
that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to
If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is