Determine $n$ if

$^{2 n} C_{3}:^{n} C_{3}=11: 1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{^{2 n} C_{3}}{^{n} C_{3}}=\frac{11}{1}$

$\Rightarrow \frac{(2 n) !}{3 !(2 n-3) !} \times \frac{3 !(n-3) !}{n !}=11$

$\Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3) !}{(2 n-3) !} \times \frac{(n-3) !}{n(n-1)(n-2)(n-3) !}$

$\Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=11$

$\Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=11$

$\Rightarrow \frac{4(2 n-1)}{n-2}=11$

$\Rightarrow 4(2 n-1)=11(n-2)$

$\Rightarrow 8 n-4=11 n-22$

$\Rightarrow 11 n-8 n=-4+22$

$\Rightarrow 3 n=18$

$\Rightarrow n=6$

Similar Questions

If $^n{C_r} = 84,{\;^n}{C_{r - 1}} = 36$ and $^n{C_{r + 1}} = 126$, then $n$ equals

In how many ways can $5$ red and $4$ white balls be drawn from a bag containing $10$ red and $8$ white balls

If $^{20}{C_{n + 2}}{ = ^n}{C_{16}}$, then the value of $n$ is

Let $A=\left[a_{i j}\right], a_{i j} \in Z \cap[0,4], 1 \leq i, j \leq 2$. The number of matrices $A$ such that the sum of all entries is a prime number $p \in(2,13)$ is $........$.

  • [JEE MAIN 2023]

The number of ways, in which the letters $A, B, C, D, E$ can be placed in the $8$ boxes of the figure below so that no row remains empty and at most one letter can be placed in a box, is :

  • [JEE MAIN 2025]