બે બિંદુવત્ વિધુતભારો વચ્ચેના સ્થિતવિદ્યુત બળ માટેનો કુલંબનો નિયમ અને બે સ્થિર બિંદુવડૂ દળો વચ્ચેના ગુરુત્વબળ માટેનો ન્યૂટનનો નિયમ એ બંનેનો આધાર વિધુતભારો/દળો વચ્ચેના અંતરના વ્યસ્ત-વર્ગ પર છે.

$(a)$ $(i)$ ઇલેક્ટ્રૉન અને પ્રોટીન અને $(ii)$ બે પ્રોટોન વચ્ચે લાગતા આ બળોના માનના ગુણોત્તર પરથી તેમની પ્રબળતાની સરખામણી કરો.

$(b)$ ઇલેક્ટ્રોન અને પ્રોટોન $1{\rm{  }}\mathop A\limits^o \left( { \approx {{10}^{ - 10}}\,m} \right)$ દૂર હોય ત્યારે તેમના પરસ્પર આકર્ષણ બળથી ઉદ્ભવતા ઇલેક્ટ્રૉન અને પ્રોટોનના પ્રવેગ શોધો. $\left(m_{p}=1.67 \times 10^{-27} \,kg , m_{e}=9.11 \times 10^{-31}\, kg \right)$. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ $(i)$ $r$ અંતરે રહેલા ઇલેક્ટ્રૉન અને પ્રોટોન વચ્ચેનું વિદ્યુતબળ

$F_{e}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}$

જ્યાં, ઋણ ચિહ્ન દર્શાવે છે કે બળ આકર્ષણ પ્રકારનું છે. આને અનુરૂપ ગુરુત્વબળ (હંમેશાં આકર્ષણ બળ છે.)

$F_{c}=-G \frac{m_{p} m_{e}}{r^{2}}$

જ્યાં, $m_{p}$ અને $m_{e}$ અનુક્રમે પ્રોટીન અને ઇલેક્ટ્રૉનનાં દળ છે.

$\left|\frac{F_{e}}{F_{G}}\right|=\frac{e^{2}}{4 \pi \varepsilon_{0} G m_{p} m_{e}}=2.4 \times 10^{39}$

$(ii)$ આ જ રીતે, $r$ અંતરે રહેલા બે પ્રોટોન વચ્ચે લાગતા વિધુતબળ અને ગુરુત્વબળનો ગુણોત્તર

$\left|\frac{F_{e}}{F_{G}}\right|=\frac{e^{2}}{4 \pi \varepsilon_{0} G m_{p} m_{p}}=1.3 \times 10^{36}$

 જો કે અત્રે એ જણાવવું જોઈએ કે બે બળોનાં ચિહ્નો જુદાં છે. બે પ્રોટોન માટે, ગુરુત્વબળ આકર્ષણ પ્રકારનું અને કુલંબ બળ અપાકર્ષણ પ્રકારનું હોય છે. ન્યુક્લિયસની અંદર રહેલા બે પ્રોટોન વચ્ચે (ન્યુક્લિયસમાં બે પ્રોટોન વચ્ચેનું અંતર $ \sim {10^{ - 15}}\,m$ હોય છે.) લાગતા બળોના વાસ્તવિક મૂલ્યો $F_{e} \sim 230\, N$ અને ${F_G} \sim 1.9 \times {10^{ - 34}}\,N$ છે.

આ બે બળોનો (પરિમાણરહિત) ગુણોત્તર દર્શાવે છે કે વિધુતબળો ગુરુત્વબળો કરતાં અત્યંત પ્રબળ છે. 

$(b)$ પ્રોટોન વડે ઇલેક્ટ્રોન પર લાગતા બળ $F$ નું માન, ઇલેક્ટ્રૉન વડે પ્રોટોન પર લાગતા બળના માન જેટલું જ છે, જો કે ઇલેક્ટ્રોન અને પ્રોટોનનાં દળ જુદાં-જુદાં છે. આમ, બળનું માન

$\left| F \right| = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{e^2}}}{{{r^2}}} = 8.987 \times {10^9}N\frac{{N{m^2}}}{{{C^2}}}\frac{{{{\left( {1.6 \times {{10}^{ - 19}}\,C} \right)}^2}}}{{{{\left( {{{10}^{ - 10}}\,m} \right)}^2}}}$

$=2.3 \times 10^{-8} \,N$

ન્યૂટનના બીજા નિયમ $F =ma$ નો ઉપયોગ કરતાં ઇલેક્ટ્રૉનનો પ્રવેગ

$a=2.3 \times 10^{-8}\, N / 9.11 \times 10^{-31}\, kg $$=2.5 \times 10^{22} \,m / s ^{2}$

આ મૂલ્યને ગુરુત્વપ્રવેગના મૂલ્ય સાથે સરખાવતાં, આપણે એવો નિષ્કર્ષ તારવી શકીએ કે ઇલેક્ટ્રોનની ગતિ પર ગુરુત્વક્ષેત્રની અસર અવગણ્ય હોય છે અને પ્રોટોન વડે લાગતા કુલંબ બળની અસર નીચે તે ખૂબ મોટો પ્રવેગ અનુભવે છે. પ્રોટોનના પ્રવેગનું મૂલ્ય

 $2.3 \times 10^{-8} \,N / 1.67 \times 10^{-27} \,kg $$=1.4 \times 10^{19}\, m / s ^{2}$ છે.

Similar Questions

આપેલ આકૃતિમાં $'O'$ એ $AB$ નું મધ્યબિંદુ હોય તો $Q$ વિદ્યુતભાર પરનું બળ ગણો.

બે સમાન મૂલ્યના અને વિરુધ્ઘ વિજભારોને અમુક અંતરે મુકતા તેમની વચ્ચે લાગતુ બળ $F$ છે. જો એક વિજભારના $75\%$ વિદ્યુતભાર બીજા વિદ્યુતભારને આપતા તેમની વચ્ચે લાગતુ બળ કેટલું થાય?

$(a)$ કૉપરના અલગ કરેલા બે ગોળાઓ $A$ અને $B$ નાં કેન્દ્રો વચ્ચેનું અંતર $50 \,cm$ છે. જો દરેક પરનો વિદ્યુતભાર $6.5 \times 10^{-7}\; C$ હોય તો તેમની વચ્ચે પરસ્પર લાગતું અપાકર્ષણનું બળ કેટલું હશે ? $A$ અને $B$ વચ્ચેના અંતરની સરખામણીએ તેમની ત્રિજ્યાઓ અવગણી શકાય તેવી છે. $(b)$ જો આ દરેક ગોળા પરનો વિદ્યુતભાર બમણો કરવામાં આવે અને તેમની વચ્ચેનું અંતર અડધું કરવામાં આવે તો કેટલું અપાકર્ષણ બળ લાગશે?

આકૃતીમાં દર્શાવ્યા મુજબ બે નાના, સમાન દળ $m$ અને સમાન વિદ્યુતભાર $q$ ધરાવતા બોલને સમાન લંબાઇ $L$ ધરાવતી અવાહક દોરી વડે લટકાવેલ છે ધારોકે ઘણો નાનો છે કે જેથી $tan\theta \approx  sin\theta $ , તો સંતુલન સમયે $x$ = .....

સમાન મૂલ્ય q ધરાવતા બે વિદ્યુતભારો $X-$ અક્ષ પર $ x=-a$ અને $x=a$ આગળ રાખેલ છે. $m$ દળ ધરાવતો અને $q_0=\frac{q}{2}$ વિદ્યુતભાર ધરાવતો એક કણ ઊગમબિંદુ પર મૂકેલ છે.હવે જો $q_0$ વિદ્યુતભારને $Y-$ અક્ષની દિશામાં શૂક્ષ્મ સ્થાનાંતર $(y < < a) $ આપવામાં આવે,તો કણ પર લાગતું પરિણામી બળ _______ ના સમપ્રમાણમાં હશે.

  • [JEE MAIN 2013]