Consider the following three statements :
$P : 5$ is a prime number.
$Q : 7$ is a factor of $192$.
$R : L.C.M.$ of $5$ and $7$ is $35$.
Then the truth value of which one of the following statements is true?

  • [JEE MAIN 2019]
  • A

    $\left( { \sim P} \right) \vee \left( {Q \wedge R} \right)$

  • B

    $\left( {P \wedge Q} \right) \vee \left( { \sim R} \right)$

  • C

    $\left( { \sim P} \right) \wedge \left( { \sim Q \wedge R} \right)$

  • D

    $P \vee \left( { \sim Q \wedge R} \right)$

Similar Questions

If $A$ : Lotuses are Pink and $B$ : The Earth is a planet. Then the
verbal translation of $\left( { \sim A} \right) \vee B$ is

$\sim (p \Leftrightarrow q)$ is

Given the following two statements :

$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.

$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.

Then

  • [JEE MAIN 2020]

The negative of the statement $\sim p \wedge(p \vee q)$ is

  • [JEE MAIN 2021]

Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.

  • [JEE MAIN 2022]