Consider the following three statements :
$P : 5$ is a prime number.
$Q : 7$ is a factor of $192$.
$R : L.C.M.$ of $5$ and $7$ is $35$.
Then the truth value of which one of the following statements is true?
$\left( { \sim P} \right) \vee \left( {Q \wedge R} \right)$
$\left( {P \wedge Q} \right) \vee \left( { \sim R} \right)$
$\left( { \sim P} \right) \wedge \left( { \sim Q \wedge R} \right)$
$P \vee \left( { \sim Q \wedge R} \right)$
If $A$ : Lotuses are Pink and $B$ : The Earth is a planet. Then the
verbal translation of $\left( { \sim A} \right) \vee B$ is
$\sim (p \Leftrightarrow q)$ is
Given the following two statements :
$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.
$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.
Then
The negative of the statement $\sim p \wedge(p \vee q)$ is
Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.