Consider a uniform spherical charge distribution of radius $R_1$ centred at the origin $O$. In this distribution, a spherical cavity of radius $R_2$, centred at $P$ with distance $O P=a=R_1-R_2$ (see figure) is made. If the electric field inside the cavity at position $\overrightarrow{ r }$ is $\overrightarrow{ E }(\overrightarrow{ r })$, then the correct statement$(s)$ is(are) $Image$

224230-q

  • [IIT 2015]
  • A

    $\vec{E}$ is uniform, its magnitude is independent of $R_2$ but its direction depends on $\vec{r}$

  • B

    $\vec{E}$ is uniform, its magnitude depends on $R_2$ and its direction depends on $\overrightarrow{ r }$

  • C

    $\overrightarrow{ E }$ is uniform, its magnitude is independent of $a$ but its direction depends on a $\vec{a}$

  • D

    $\overrightarrow{ E }$ is uniform and both its magnitude and direction depend on $\overrightarrow{ a }$

Similar Questions

Let $\rho (r) =\frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point '$p$' inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is

  • [AIEEE 2009]

Obtain the expression of electric field by a straight wire of infinite length and with linear charge density $'\lambda '$.

A long, straight wire is surrounded by a hollow, thin, long metal cylinder whose axis coincides with that of wire. The wire has a charge per unit length of $\lambda$, and the cylinder has a net charge per unit length of $2\lambda$.  Radius of the cylinder is $R$

The electric field due to a uniformly charged sphere of radius $R$ as a function of the distance $r$ from its centre is represented graphically by

  • [AIIMS 2004]

The nuclear charge $(\mathrm{Ze})$ is non-uniformly distributed within a nucleus of radius $R$. The charge density $\rho$ (r) [charge per unit volume] is dependent only on the radial distance $r$ from the centre of the nucleus as shown in figure The electric field is only along rhe radial direction.

Figure:$Image$

$1.$ The electric field at $\mathrm{r}=\mathrm{R}$ is

$(A)$ independent of a

$(B)$ directly proportional to a

$(C)$ directly proportional to $\mathrm{a}^2$

$(D)$ inversely proportional to a

$2.$ For $a=0$, the value of $d$ (maximum value of $\rho$ as shown in the figure) is

$(A)$ $\frac{3 Z e}{4 \pi R^3}$ $(B)$ $\frac{3 Z e}{\pi R^3}$ $(C)$ $\frac{4 Z e}{3 \pi R^3}$ $(D)$ $\frac{\mathrm{Ze}}{3 \pi \mathrm{R}^3}$

$3.$ The electric field within the nucleus is generally observed to be linearly dependent on $\mathrm{r}$. This implies.

$(A)$ $a=0$ $(B)$ $\mathrm{a}=\frac{\mathrm{R}}{2}$ $(C)$ $a=R$ $(D)$ $a=\frac{2 R}{3}$

Give the answer question $1,2$ and $3.$

  • [IIT 2008]