એકસમાન વિદ્યુતક્ષેત્ર $E = 3 \times {10^3}\hat i\;N/C$ નો વિચાર કરો.
$(a)$ $yz$ સમતલને સમાંતરે જેનું સમતલ હોય તેવા $10 \,cm$ ની બાજુવાળા ચોરસમાંથી આ ક્ષેત્રનું ફલક્સ કેટલું હશે? $(b)$ જો આ જ ચોરસના સમતલને દોરેલો લંબ $x$ -અક્ષ સાથે $60^{\circ}$ નો કોણ બનાવે તો તેમાંથી ફલક્સ કેટલું હશે?
$(a)$ Electric field intensity, $E =3 \times 10^{3} \hat{ i } \,N / C$
Magnitude of electric field intensity, $| E |=3 \times 10^{3} \,N / C$
Side of the square, $s=10 \,cm =0.1\, m$
Area of the square, $A=s^{2}=0.01 \,m ^{2}$ The plane of the square is parallel to the $y-z$ plane. Hence, angle between the unit vector normal to the plane and electric field, $\theta=0^{\circ}$
Flux ( $\phi$ ) through the plane is given by the relation, $\phi=| E | A \cos \theta=3 \times 10^{3} \times 0.01 \times \cos 0^{\circ}=30 \,N\, m ^{2} / C$
$(b)$ Plane makes an angle of $60^{\circ}$ with the $x$ - axis. Hence, $\theta=60^{\circ}$ Flux, $\phi=| E | A \cos \theta$$=3 \times 10^{3} \times 0.01 \times \cos 60^{\circ}$
$=30 \times \frac{1}{2}=15\; N \,m ^{2} / C$
દર્શાવેલ આલેખમાં $P$ અને $Q$ પાસે વિદ્યુતક્ષેત્રની તીવ્રતાના ગુણોત્તર કેટલો છે ?
નીચે બે વિધાન આપવામાં આવ્યા છે :
વિધાન $I :$ એક વિદ્યુત દ્વિધ્રુવીને પોલા ગોળાના કેન્દ્રમાં મૂકવામાં આવે છે. ગોળામાંથી પસાર થતા વિદ્યુત ક્ષેત્રનું ફલકસ શૂન્ય છે પરંતુ ગોળામાં ક્યાંય વિદ્યુત ક્ષેત્ર શૂન્ય નથી.
વિધાન $II :$ ઘન ધાત્વીક ગોળાની ત્રિજ્યા $'R'$ અને તેના પર રહેલો કુલ વિજભાર $Q$ છે.$r ( < R)$ ત્રિજ્યા ધરાવતા ગોલીય સપાટીના કોઈપણ બિંદુ પર વિદ્યુત ક્ષેત્ર શૂન્ય છે પરંતુ $‘r'$ ત્રિજ્યા ધરાવતા આ બંધ ગોલીય સપાટીમાંથી પસાર થતા વિદ્યુત ફ્લકસ નું મૂલ્ય શૂન્ય નથી.
ઉપરોક્ત વિધાનને અનુલક્ષીને આપેલ વિકલ્પોમાંથી સાચો જવાબ પસંદ કરો :
વિદ્યુત ફલક્સ સદિશ છે કે અદિશ ? તે સમજાવો ?
ઘાતુના ગોળાને સમાન વિધુતક્ષેત્રમાં મૂકતા તેમાં વિધુતક્ષેત્ર રેખાનો સાચો માર્ગ કયો થાય?
જો વિદ્યુતફલક્સ ગાઉસના પૃષ્ઠમાંથી બહાર આવતું હોય તો પૃષ્ઠ સાથે શું સંકળાયેલું હશે ?