Coefficient of $x^{11}$ in the expansion of $\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}$ is
$1051$
$1106$
$1113$
$1120$
Let $m$ be the smallest positive integer such that the coefficient of $x^2$ in the expansion of $(1+x)^2+(1+x)^3+\cdots+(1+x)^{49}+(1+m x)^{50}$ is $(3 n+1)^{51} C_3$ for some positive integer $n$. Then the value of $n$ is
The coefficient of $x^{18}$ in the product $(1+ x)(1- x)^{10} (1+ x + x^2 )^9$ is
If the coefficients of second, third and fourth term in the expansion of ${(1 + x)^{2n}}$ are in $A.P.$, then $2{n^2} - 9n + 7$ is equal to
Let $\mathrm{m}$ and $\mathrm{n}$ be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
Let $a$ and $b$ be two nonzero real numbers. If the coefficient of $x^5$ in the expansion of $\left(a x^2+\frac{70}{27 b x}\right)^4$ is equal to the coefficient of $x^{-5}$ is equal to the coefficient of $\left(a x-\frac{1}{b x^2}\right)^7$, then the value of $2 b$ is