$R$ ત્રિજ્યાની ડીશની સપાટી પર $Q$ વિધુતભાર નિયમિત વિતરીત થયેલો હોય, તો તેના અક્ષ પર સ્થિતિમાન ગણો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

ધારોકે, ડીશના કેન્દ્રથી $x$ અંતરે તેના અક્ષ પર $P$ બિંદુ છે અને ડીશને અસંખ્ય સંખ્યામાં વિદ્યુતભારિત રિંગમાં વિભાગેલો કલ્પો જે નીયે આકૃતિમાં દર્શાવ્યું છે.

ધારોક, રિંગની ત્રિજ્યા $r$, જાડઈ $d r$ અને વિદ્યુતભાર $d q$ છે.

$\therefore \sigma d A =\sigma 2 \pi r d r \quad \text {... (1) }$

$P$ બિંદુ પાસે સ્થિતિમાન,

$d V =\frac{k d q}{r}$

રિંગ પરનો વિદ્યુતભાર $d q=+\sigma\left[\pi(r+d r)^{2}-\pi r^{2}\right]$

$\therefore d q=+\sigma \pi\left[(r+d r)^{2}-r^{2}\right]$

$\quad=+\sigma \pi\left[r^{2}+2 r d r+d r^{2}-r^{2}\right]$

$\quad=+\sigma \pi\left[2 r d r+d r^{2}\right]$

$d r$ ધણું નાનું હોવાથી $d r^{2}$ ને અવગણત્તાં, $d q=2 \pi r \sigma d r\ldots (2)$

$d q=2 \pi r \sigma d r$$\ldots (2)$

અને $d V =\frac{k d q}{\sqrt{r^{2}+x^{2}}}$

$=\frac{k \times 2 \pi r \sigma d r}{\sqrt{r^{2}+x^{2}}}$

[પરિણામ $(2)$ પરથી]

$\therefore V =2 \pi k \sigma \int_{0}^{ R } \frac{r d r}{\sqrt{r^{2}+x^{2}}}=2 \pi k \sigma \int_{0}^{ R }\left(r^{2}+x^{2}\right)^{-1 / 2} r d r$

$\therefore V =2 \pi k \sigma\left[\left(r^{2}+x^{2}\right)^{1 / 2}-x\right]_{0}^{ R }$

898-s173

Similar Questions

$+q$ વિદ્યુતભારને $X-$અક્ષ પર $x = x_0,\,x = 3x_0,\,x = 5x_0$, .... $\infty $ બિંદુ પર મૂકેલો છે. વિદ્યુતભારને $X-$અક્ષ પર $-q$ ને $x = 2x_0,\,x = 4x_0,\,x = 6x_0$, .... $\infty $ બિંદુ પર મૂકેલો છે. જ્યાં $x_0$ ધન અચળાંક છે. $Q$ વિદ્યુતભારથી $r$ અંતરે વિદ્યુતસ્થિતિમાન $\frac{Q}{{4\pi {\varepsilon _0}r}}$ હોય તો ઉગમબિંદુએ વિદ્યુતસ્થિતિમાન કેટલું થાય?

$a$ અને $b$ ત્રિજ્યાઓ ધરાવતા બે વિદ્યુતભારીત ગોળાઓને એક સુવાહક તારથી એકબીજાને જોડવામાં આવે છે. બે ગોળાઓના અનુક્રમે વિદ્યુતભારનો ગુણોત્તર. . . . . .હશે.

  • [JEE MAIN 2024]

$b$ બાજુવાળા એક ધનના દરેક બિંદુએ વિધુતભાર $q$ છે. આ વિધુતભારના તંત્રને લીધે ધનના કેન્દ્ર પર સ્થિતિમાન અને વિધુતક્ષેત્ર શોધો.

$5\times 10^{-9}\,C$ ના બિંદુવત વીજભારને લીધે $P$ બિંદુએ વિદ્યુત સ્થિતિમાન $50\,V$ છે. બિંદુવત વીજભારથી $P$ નું અંતર ........$cm$ છે. $\left[\frac{1}{4 \pi \varepsilon_0}=9 \times 10^{+9}\,Nm ^2\, C ^{-2}\right.$ ધારો $]$

  • [JEE MAIN 2023]

$R _{1}$ અને $R _{2}\left( R _{1}>> R _{2}\right)$ ત્રિજ્યાઓ ધરાવતા બે પોલા વાહક ગોળાઓ પર સમાન વિદ્યુતભાર છે. સ્થિતિમાન$.............$હશે.

  • [NEET 2022]