By acute division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: $x^{4}+1 ; x+1$
By acute division, we have
$\begin{array}{l}x-1 |\overline {x^{4}+1} (x^{3}+x^{2}+x+1)\\ \;\;\; \;\;\;\;\;\;\; x^{4}-x^{3}\;\;\;\;\;\;\; \\ \hline \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{3}+1 \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\,x^{3}-x^{2} \\ \hline \;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\; x^{2}+1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{2}-x \;\;\; \\ \hline \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x+1 \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x-1 \\ \hline \;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\; 2 \end{array}$
Write the coefficient of $x^{2}$ in each of the following:
$(i)$ $(x-1)(3 x-4)$
$(ii)$ $(2 x-5)\left(2 x^{2}-3 x+1\right)$
Find $p(1), p(2)$ and $p(4)$ for each of the following polynomials
$p(x)=x^{2}-3 x+2$
Factorise each of the following
$27 x^{3}-8 y^{3}-54 x^{2} y+36 x y^{2}$
Find the value of $a$, if $x-a$ is a factor of $x^{3}-a x^{2}+2 x+a-1$.
Give an example of a polynomial, which is:
$(i)$ monomial of degree $1$
$(ii)$ binomial of degree $20$
$(iii)$ trinomial of degree $2$