At what angle of elevation, should a projectile be projected with velocity $20 \,ms ^{-1}$, so as to reach a maximum height of $10 \,m$ ?
$0$
$90$
$45$
$60$
A body is projected from the ground at an angle of $45^{\circ}$ with the horizontal. Its velocity after $2s$ is $20 \,ms ^{-1}$. The maximum height reached by the body during its motion is $m$. (use $g =10\, ms ^{-2}$ )
A projectile fired at $30^{\circ}$ to the ground is observed to be at same height at time $3 s$ and $5 s$ after projection, during its flight. The speed of projection of the projectile is $.........\,ms ^{-1}$(Given $g=10\,m s ^{-2}$ )
A ground to ground projectile is at point $A$ at $t=\frac{T}{3}$, is at point $B$ at $t=\frac{5 T}{6}$ and reaches the ground at $t=T$. The difference in heights between points $A$ and $B$ is
Two stones are projected with the same speed but making different angles with the horizontal. Their ranges are equal. If the angle of projection of one is $\pi /3$ and its maximum height is $h_1$ then the maximum height of the other will be
Two projectiles, one fired from surface of earth with velocity $10 \,m/s$ and other fired from the surface of another planet with initial speed $5\, m/s$ trace identical trajectories. The value of acceleration due to the gravity on the planet is ......... $m/s^2$