At $t = 0$ a projectile is fired from a point $O$(taken as origin) on the ground with a speed of $50\,\, m/s$ at an angle of $53^o$ with the horizontal. It just passes two points $A \& B$ each at height $75 \,\,m$ above horizontal as shown. The horizontal separation between the points $A$ and $B$ is ........ $m$
$30$
$60$
$90$
None
What is range of the projectile particle ? Give velocity of projectile particle at maximum height.
A stone is projected from a point on the ground so as to hit a bird on the top of a vertical pole of height $h$ and then attain a maximum height $2 h$ above the ground. If at the instant of projection the bird flies away horizontally with a uniform speed and if the stone hits the bird while descending, then the ratio of the speed of the bird to the horizontal speed of the stone is
Given that $u_x=$ horizontal component of initial velocity of a projectile, $u_y=$ vertical component of initial velocity, $R=$ horizontal range, $T=$ time of flight and $H=$ maximum height of projectile. Now match the following two columns.
Column $I$ | Column $II$ |
$(A)$ $u_x$ is doubled, $u_y$ is halved | $(p)$ $H$ will remain unchanged |
$(B)$ $u_y$ is doubled $u_x$ is halved | $(q)$ $R$ will remain unchanged |
$(C)$ $u_x$ and $u_y$ both are doubled | $(r)$ $R$ will become four times |
$(D)$ Only $u_y$ is doubled | $(s)$ $H$ will become four times |
Figure shows a projectile thrown with speed $u=20 \,m / s$ at an angle $30^{\circ}$ with horizontal from the top of a building $40 \,m$ high. Then the horizontal range of projectile is ........... $m$