At $25\,^oC$, the dissociation constant of $CH_3COOH$ and $NH_4OH$ in aqueous solution are almost the same. The $pH$ of a solution $0.01\, N\, CH_3COOH$ is $4.0$ at $25\,^oC$. The $pH$ of $0.01\, N\, NH_4OH$ solution at the same temperature would be
$3$
$4$
$10$
$10.5$
$25$ $mL$ $0.1$ $M$ $HCl$ solution is diluted till $500$ $mL$. Calculate $pH$ of dilute solution.
Assuming that the degree of hydrolysis is small, the $pH$ of $0.1\, M$ solution of sodium acetate $(K_a\, = 1.0\times10^{- 5})$ will be
The $pH$ value of decinormal solution of $N{H_4}OH$ which is $20\%$ ionised, is
The $K_a$ of monobasic acid $A, B$ and $C$ are $10^{-6}, 10^{-8}$ and $10^{-10}$ respectively. The concentrations of $A, B$ and $C$ are respectively. $0.1\,M$, $0.01\, M$ and $0.001\, M$. Which of the following is correct for $pOH$ of $A, B$ and $C$ ?
A compound whose aqueous solution will have the highest $pH$