The $K_a$ of monobasic acid $A, B$ and $C$ are $10^{-6}, 10^{-8}$ and $10^{-10}$ respectively. The concentrations of $A, B$ and $C$ are respectively. $0.1\,M$, $0.01\, M$ and $0.001\, M$. Which of the following is correct for $pOH$ of $A, B$ and $C$ ?
$pOH (A) < pOH (B) < pOH (C)$
$pOH (A) > pOH (B) > pOH (C)$
$pOH (A) = pOH (B) = pOH (C)$
$pOH (C) < pOh (A) < pOH (B)$
The solubility of a salt of weak acid $( A B )$ at $pH 3$ is $Y \times 10^{-3} mol L ^{-1}$. The value of $Y$ is
. . . . . (Given that the value of solubility product of $A B \left( K _{ sp }\right)=2 \times 10^{-10}$ and the value of ionization constant of $H B \left( K _{ a }\right)=1 \times 10^{-8}$ )
A $0.1\,N $ solution of an acid at room temperature has a degree of ionisation $ 0.1$ . The concentration of $O{H^ - }$ would be
Heat of neutralisation of weak acid and strong base is less than the heat of neutralisation of strong acid and strong base due to
When $CO_2$ dissolves in water, the following equilibrium is established
$C{O_2} + 2{H_2}O\, \rightleftharpoons {H_3}{O^ + } + HCO_3^ - $
for which the equilibrium constant is $3.8 \times 10^{-7}$ and $pH = 6.0$. The ratio of $[HCO_3^- ]$ to $[CO_2]$ would be :-
Degree of dissociation is $10\%$ for $10^{-3}\, M$ solution of $H_2CO_3$ then $pH$ of solution is