The experimental data for the reaction $2A + {B_2} \to 2AB$ isThe rate equation for the above data is
Exp. |
$[A]_0$ |
$[B]_0$ |
Rate (mole $s^{-1}$) |
$(1)$ |
$0.50$ |
$0.50$ |
$1.6 \times {10^{ - 4}}$ |
$(2)$ |
$0.50$ |
$1.00$ |
$3.2 \times {10^{ - 4}}$ |
$(3)$ |
$1.00$ |
$1.00$ |
$3.2 \times {10^4}$ |
Rate $ = k\,[{B_2}]$
Rate $ = k\,{[{B_2}]^2}$
Rate $ = k{[A]^2}\,{[B]^2}$
Rate $ = k\,{[A]^2}[B]$
Consider the following data for the given reaction $2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$ . The order of the reaction is................
$1$ | $2$ | $3$ | |
$\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | $0.005$ | $0.01$ | $0.02$ |
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}-1\right)$ | $7.5 \times 10^{-4}$ | $3.0 \times 10^{-3}$ | $1.2 \times 10^{-2}$ |
What is molecularity of a relation ? Explain its types by examples.
For the reaction system $2NO(g) + {O_2}(g) \to 2N{O_2}(g)$ volume is suddenly produced to half its value by increasing the pressure on it. If the reaction is of first order with respect to $O_2$ and second order with respect to $NO,$ the rate of reaction will
For a chemical reaction $A + B \rightarrow$ Product, the order is $1$ with respect to $A$ and $B$.
Rate $mol\,L^{-1}\,s^{-1}$ | $[A]$ $mol\,L^{-1}$ | $[B]$ $mol\,L^{-1}$ |
$0.10$ | $20$ | $0.5$ |
$0.40$ | $x$ | $0.5$ |
$0.80$ | $40$ | $y$ |
What is the value of $x$ and $y ?$
Which of the following statements is false ?