ગણ સમાન છે ? કારણ આપો : $A = \{ x:x$ એ $\mathrm{FOLLOW}$ શબ્દનો મૂળાક્ષર છે $\} ,$ $B = \{ y:y$ એ $\mathrm{WOLF}$ શબ્દનો મૂળાક્ષર છે. $\} $
$A = \{ x:x$ is a letter in the word ${\rm{FOLLOW }}\} $
$B = \{ y:y$ is a letter in the word $WOLF\} $
The order in which the elements of a set are listed is not significant.
$\therefore A=B$
ડાબી બાજુએ યાદીની રીતે દર્શાવેલ ગણોને જમણી બાજુએ તેના જ ગુણધર્મની રીતે દર્શાવેલા ગણો સાથે સાંકળો.
$(i)$ $\{1,2,3,6\}$ | $(a)$ $\{ x:x$ એ અવિભાજ્ય સંખ્યા છે અને $6$ નો અવયવ છે. $\} $ |
$(ii)$ $\{2,3\}$ | $(b)$ $\{ x:x$ એ $10$ કરતાં નાની અયુગ્મ પ્રાકૃતિક સંખ્યા છે. $\} $ |
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ | $(c)$ $\{ x:x$ એ પ્રાકૃતિક સંખ્યા છે અને $6$ નો અવયવ છે. $\} $ |
$(iv)$ $\{1,3,5,7,9\}$ | $(d)$ $\{ x:x$ એ $\mathrm{MATHEMATICS}$ શબ્દનો મૂળાક્ષર છે. $\} $ |
ગણ સાન્ત કે અનંત છે તે નક્કી કરો : $\{ x:x \in N$ અને $2x - 1 = 0\} $
$A=\{1,3,5\}, B=\{2,4,6\}$ અને $C=\{0,2,4,6,8\},$ આપેલ ગણ છે. આ ત્રણ ગણ $A, B$ અને $C$ માટે નીચેનામાંથી કયા ગણને સાર્વત્રિક ગણ તરીકે લઈ શકાય. $\{0,1,2,3,4,5,6,7,8,9,10\}$
વિધાન સત્ય બને તે રીતે ખાલી જગ્યામાં સંજ્ઞા $\subset$ અથવા $ \not\subset $ પૂરો: $\{ x:x$ એ સમતલમાં સમબાજુ ત્રિકોણ છે. $\} \ldots \{ x:x$ એ આ જ સમતલનો ત્રિકોણ છે. $\} $
ગણ છે, $\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$ આપેલા છે.
નીચે દર્શાવેલી દરેક ગણની જોડીની વચ્ચે સંજ્ઞા $\subset$ અથવા $ \not\subset $ સમાવિષ્ટ કરો :
$\phi \,....\,B$ $A \,....\,B$ $A\,....\,C$ $B\,....\,C$