An insulator plate is passed between the plates of a capacitor. Then the displacement current
First flows anticlockwise and then clockwise
First flows clockwise then anticlockwise
Always flows clockwise
Always flows anticlockwise
Two identical capacitors $1$ and $2$ are connected in series. The capacitor $2$ contains a dielectric slab of constant $K$ as shown. They are connected to a battery of emf $V_0\ volts$ . The dielectric slab is then removed. Let $Q_1$ and $Q_2$ be the charge stored in the capacitors before removing the slab and $Q'_1$ , and $Q'_2$ be the values after removing the slab. Then
Between the plates of a parallel plate condenser there is $1\,mm$ thick paper of dielectric constant $4$. It is charged at $100\;volt$. The electric field in $volt/metre$ between the plates of the capacitor is
After charging a capacitor the battery is removed. Now by placing a dielectric slab between the plates :-
Two identical charged spheres are suspended by string of equal lengths. The string make an angle of $37^{\circ}$ with each other. When suspended in a liquid of density $0.7 \mathrm{~g} / \mathrm{cm}^3$, the angle remains same. If density of material of the sphere is $1.4 \mathrm{~g} / \mathrm{cm}^3$, the dielectric constant of the liquid is_____$\left(\tan 37^{\circ}=\frac{3}{4}\right)$.
Two identical parallel plate capacitors of capacitance $C$ each are connected in series with a battery of emf, $E$ as shown below. If one of the capacitors is now filled with a dielectric of dielectric constant $k$, then the amount of charge which will flow through the battery is (neglect internal resistance of the battery)