Three students $S_{1}, S_{2}$ and $S_{3}$ perform an experiment for determining the acceleration due to gravity $(g)$ using a simple pendulum. They use different lengths of pendulum and record time for different number of oscillations. The observations are as shown in the table.
Student No. | Length of pendulum $(cm)$ | No. of oscillations $(n)$ | Total time for oscillations | Time period $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(Least count of length $=0.1 \,{m}$, least count for time $=0.1\, {s}$ )
If $E_{1}, E_{2}$ and $E_{3}$ are the percentage errors in $'g'$ for students $1,2$ and $3$ respectively, then the minimum percentage error is obtained by student no. ....... .
A student in the laboratory measures thickness of a wire using screw gauge. The readings are $1.22\,mm , 1.23\,mm , 1.19\,mm$ and $1.20\,mm$. The percentage error is $\frac{ x }{121} \%$. The value of $x$ is ..............
The time period of a simple pendulum is given by $T =2 \pi \sqrt{\frac{\ell}{ g }}$. The measured value of the length of pendulum is $10\, cm$ known to a $1\, mm$ accuracy. The time for $200$ oscillations of the pendulum is found to be $100$ second using a clock of $1s$ resolution. The percentage accuracy in the determination of $'g'$ using this pendulum is $'x'$. The value of $'x'$ to the nearest integer is ...........$\%$
A physical quantity is given by $X = {M^a}{L^b}{T^c}$. The percentage error in measurement of $M,L$ and $T$ are $\alpha ,\beta $ and $\gamma $ respectively. Then maximum percentage error in the quantity X is
Zero error of an instrument introduces