An electron is moving along the positive $x$-axis. If the uniform magnetic field is applied parallel to the negative $z$-axis. then
$A.$ The electron will experience magnetic force along positive $y$-axis
$B.$ The electron will experience magnetic force along negative $y$-axis
$C.$ The electron will not experience any force in magnetic field
$D.$ The electron will continue to move along the positive $x$-axis
$E.$ The electron will move along circular path in magnetic field
Choose the correct answer from the options given below:
$B$ and $E$ only
$A$ and $E$ only
$C$ and $D$ only
$B$ and $D$ only
If the magnetic field is parallel to the positive $y-$axis and the charged particle is moving along the positive $x-$axis (Figure), which way would the Lorentz force be for
$(a)$ an electron (negative charge),
$(b)$ a proton (positive charge).
A homogeneous electric field $E$ and a uniform magnetic field $\mathop B\limits^ \to $ are pointing in the same direction. A proton is projected with its velocity parallel to $\mathop E\limits^ \to $. It will
The radius of curvature of the path of a charged particle moving in a static uniform magnetic field is
A charged particle of charge $q$ and mass $m$, gets deflected through an angle $\theta$ upon passing through a square region of side $a$, which contains a uniform magnetic field $B$ normal to its plane. Assuming that the particle entered the square at right angles to one side, what is the speed of the particle?
Two particles $A$ and $B$ having equal charges $+6\,C$, after being accelerated through the same potential difference, enter in a region of uniform magnetic field and describe circular paths of radii $2\,cm$ and $3\,cm$ respectively. The ratio of mass of $A$ to that of $B$ is