A uniform vertical electric field $E$ is established in the space between two large parallel plates. A small conducting sphere of mass $m$ is suspended in the field from a string of length $L$. If the sphere is given $a + q$ charge and the lower plate is charged positvely, the period of oscillation of this pendulum is :-
${2\pi }\sqrt[]{{\frac{L}{g}}}$
${2\pi }\sqrt[]{{\frac{L}{{g + (qE/m)}}}}$
${2\pi }\sqrt[]{{\frac{L}{{g - (qE/m)}}}}$
${2\pi }\sqrt[]{{\frac{L}{{{{\left[ {{g^2} - {{(qE/m)}^2}} \right]}^{\frac{1}{2}}}}}}}$
The figures below depict two situations in which two infinitely long static line charges of constant positive line charge density $\lambda$ are kept parallel to each other. In their resulting electric field, point charges $q$ and $- q$ are kept in equilibrium between them. The point charges are confined to move in the $x$ direction only. If they are given a small displacement about their equilibrium positions, then the correct statement$(s)$ is(are)
The electric field inside a spherical shell of uniform surface charge density is
An inclined plane making an angle of $30^{\circ}$ with the horizontal is placed in a uniform horizontal electric field $200 \, \frac{ N }{ C }$ as shown in the figure. A body of mass $1\, kg$ and charge $5\, mC$ is allowed to slide down from rest at a height of $1\, m$. If the coefficient of friction is $0.2,$ find the time (in $s$ )taken by the body to reach the bottom. $\left[ g =9.8 \,m / s ^{2}, \sin 30^{\circ}=\frac{1}{2}\right.$; $\left.\cos 30^{\circ}=\frac{\sqrt{3}}{2}\right]$
An electron of mass ${m_e}$ initially at rest moves through a certain distance in a uniform electric field in time ${t_1}$. A proton of mass ${m_p}$ also initially at rest takes time ${t_2}$ to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio of ${t_2}/{t_1}$ is nearly equal to