$x-y$ तल में एक विद्युत बल रेखा समीकरण ${x^2} + {y^2} = 1$ द्वारा दी गयी है। इस तल में बिन्दु $x = 1,\;y = 0$ पर प्रारम्भ में विराम अवस्था से एक इकाई धनावेशित कण
गति बिल्कुल नहीं करेगा
सरल रेखा के अनुदिश गति करेगा
वृत्तीय बल रेखा के अनुदिश गति करेगा
कोई भी निष्कर्ष निकालने के लिए जानकारी अधूरी है
$z$-अक्ष के समांतर एक अनंत लम्बाई की पतली अचालक (non-conducting) तार पर एकसमान रेखीय आवेश घनत्व (uniform line charge density) $\lambda$ है। यह तार $R$ त्रिज्या वाले एक पतले अचालक गोलीय कोश (spherical shell) को इस प्रकार भेदता है कि आर्क (arc) $P Q$, गोलीय कोश के केंद्र $O$ पर $120^{\circ}$ का कोण बनाती है, जैसा कि चित्र में दर्शाया गया है। मुक्त आकाश का पराविधुतक (permittivity of free space) $\epsilon_0$ है। निम्नलिखित कथनों में से कौन सा (से) सही है (हैं)?
$(A)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{3} R \lambda / \epsilon_0$ है
$(B)$ विधुत क्षेत्र (electric field) का $z$-घटक ( $z$-component) कोश के पृष्ठ (surface) के सभी बिन्दुओं पर शून्य है
$(C)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{2} R \lambda / \epsilon_0$ है
$(D)$ विधुत क्षेत्र (electric field) कोश के पृप्ठ के सभी बिन्दुओं पर लम्बवत (normal) है
किसी बन्द पृष्ठ से अन्दर की ओर तथा बाहर की ओर विद्युत फ्लक्स $N - {m^2}/C$ इकाईयों में क्रमश: $8 \times {10^3}$ व $4 \times {10^3}$ है तो पृष्ठ के अन्दर कुल आवेश होगा [जहाँ ${ \in _0} = $ विद्युतशीलता है
एक धात्विक घन को धनावेश $Q$ दिया गया है। इस व्यवस्था के लिए, निम्न में से कौनसा कथन सत्य है
चित्र में गोलीय गॉसीय तल एवं इस पर वितरित आवेश दिखाया गया है। तल पर विद्युत क्षेत्र के फ्लक्स के लिए बताएँ कि विद्युत क्षेत्र किस कारण से उत्पé होता है
विद्युत बल रेखाओं के बारे में असत्य कथन है