An artificial satellite is revolving around a planet of mass $M$ and radius $R$ in a circular orbit of radius $r$. From Kepler’s third law about the period of a satellite around a common central body, square of the period of revolution $T$ is proportional to the cube of the radius of the orbit $r$. Show using dimensional analysis that $T\, = \,\frac{k}{R}\sqrt {\frac{{{r^3}}}{g}} $, where $k$ is dimensionless constant and $g$ is acceleration due to gravity.
According to Kepler's third law,
$\mathrm{T}^{2} \propto r^{3} \Rightarrow \mathrm{T} \propto r^{\frac{3}{2}}$
We know that $\mathrm{T}$ is a function of $\mathrm{R}$ and $\mathrm{g}$,
Let, $\quad \mathrm{T} \propto r^{\frac{3}{2}} \mathrm{R}^{a} g^{b}$
$\therefore \mathrm{T}=k r^{\frac{3}{2}} \mathrm{R}^{a} g^{b}$
where $k$ is a dimensionless constant of proportionality. Substituting the dimensions of each term in equ. $(i)$, we get
$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}\right] =[\mathrm{L}]^{\frac{3}{2}}[\mathrm{~L}]^{a}\left[\mathrm{LT}^{-2}\right]^{b}$
$=\left[\mathrm{L}^{a+b+\frac{3}{2}} \mathrm{~T}^{-2 b}\right]$
By comparing the powers,
$a+2 b+\frac{3}{2}=0$
$\quad=-2 b=1 \Rightarrow b=-\frac{1}{2}$
Using equ. $(ii)$,
$a-\frac{1}{2}+\frac{3}{2}=0 \Rightarrow a=-1$
By substituting the values of $a$ and $b$ in equ. $(i)$,
$\mathrm{T} =k r^{\frac{3}{2}} \mathrm{R}^{-1} g^{-\frac{1}{2}}$
$\therefore \mathrm{T} =\frac{k}{\mathrm{R}} \sqrt{\frac{r^{3}}{g}}$
Let us consider a system of units in which mass and angular momentum are dimensionless. If length has dimension of $L$, which of the following statement ($s$) is/are correct ?
$(1)$ The dimension of force is $L ^{-3}$
$(2)$ The dimension of energy is $L ^{-2}$
$(3)$ The dimension of power is $L ^{-5}$
$(4)$ The dimension of linear momentum is $L ^{-1}$
With the usual notations, the following equation ${S_t} = u + \frac{1}{2}a(2t - 1)$ is
If force $({F})$, length $({L})$ and time $({T})$ are taken as the fundamental quantities. Then what will be the dimension of density
The dimensions of physical quantity $X$ in the equation Force $ = \frac{X}{{{\rm{Density}}}}$ is given by