An arbitrary shaped closed coil is made of a wire of length $L$ and a current $I$ ampere is flowing in it. If the plane of the coil is perpendicular to magnetic field $\mathop B\limits^ \to $, the force on the coil is

  • A

    $Zero$

  • B

    $IBL$

  • C

    $2IBL$

  • D

    $\frac{1}{2}IBL$

Similar Questions

The circuit in figure consists of wires at the top and bottom and identical springs as the left and right sides. The wire at the bottom has a mass of $10\, g$ and is $5\, cm$ long. The wire is hanging as shown in the figure. The springs stretch $0.5\, cm$ under the weight of the wire and the circuit has a total resistance of $12\, \Omega $. When the lower wire is subjected to a static magnetic field, the springs, stretch an additional $0.3\, cm$. The magnetic field is

  • [AIEEE 2012]

A uniform conducting wire $A B C$ has a mass of $10 \,g$. A current of $2 \,A$ flows through it. The wire is kept in a uniform magnetic field $B=2 T$. The acceleration of the wire will be ............. $ms ^{-2}$

A stream of electrons is projected horizontally to the right. A straight conductor carrying a current is supported parallel to electron stream and above it. If the current in the conductor is from left to right then what will be the effect on electron stream

A current of $10\, ampere$ is flowing in a wire of length $1.5\, m$. A force of $15\, N$ acts on it when it is placed in a uniform magnetic field of $2$ $tesla$. The angle between the magnetic field and the direction of the current is.....$^o$

Two straight parallel wires, both carrying $10$ $ampere$ in the same direction attract each other with a force of $1 \times {10^{ - 3}}\,N$. If both currents are doubled, the force of attraction will be