All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in
$\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right)$
$\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
$\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{11 \pi}{6}\right)$
$\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)$
Let $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$.Then
If $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, then $x = $ (where $k \in Z$)
Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$
If $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ and $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ , then the value of $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
The number of solutions of the equation $x +2 \tan x =\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :