गॉस प्रमेय के अनुसार अनन्त लम्बाई के सीधे तार के कारण विद्युत क्षेत्र अनुक्रमानुपाती होता है
$r$
$\frac{1}{{{r^2}}}$
$\frac{1}{{{r^3}}}$
$\frac{1}{r}$
त्रिज्या $R$ और कुल आवेश $Q$ वाले एक ठोस गोले पर आवेश घनत्व वितरण $P(r)=\frac{Q}{\pi R^{4}} r,$ गोले के केन्द्र से $r_{1}$ दूरी पर गोले के अन्दर एक बिन्दु $'p'$ पर विघुत क्षेत्र का परिमाण है :
दो अनंत लम्बाई की समानान्तर चालक पट्टिकायें (प्लेट्स) जिनके सतही आवेश घनत्व क्रमश : $ + \sigma $ और $ - \sigma $ हैं, एक थोड़ी दूरी के अंतराल पर रखी हैं। इन पट्टिकाओं के बीच का माध्यम निर्वात है। अगर निर्वात का परावैद्युतांक ${\varepsilon _0}$ है, तो पट्टिकाओं के बीच विद्युत क्षेत्र का मान है
गाउस नियम का उपयोग किए बिना किसी एकसमान रैखिक आवेश घनत्व $\lambda$ के लंबे पतले तार के कारण विध्युत क्षेत्र के लिए सूत्र प्राप्त कीजिए
एकसमान आवेश से आवेशित दो समान्तर प्लेटों के पृष्ठीय आवेश घनत्व समान $(\sigma )$ हैं। प्लेटों के बीच में विद्युत क्षेत्र होगा
यहाँ आरेख में, किसी गोलाकार कोश (शैल) के कोटर के भीतर दो बिन्दु-आवेश $+ Q$ तथा $- Q$ दर्शाये गये हैं। ये आवेश कोटर की सतह के निकट इस प्रकार रखे गये हैं कि, एक आवेश कोश के केन्द्र की एक ओर है और दूसरा केन्द्र के विपरीत दूसरी ओर। यदि, भीतरी तथा बाहरी सतहों (पृष्ठों) पर, पृष्ठ आवेश क्रमशः $\sigma_{1}$ तथा $\sigma_{2}$ और नेट आवेश क्रमशः $Q_{1}$ तथा $Q _{2}$ हो तो :