A wall consists of alternating blocks of length $d$ and coefficient of thermal conductivity $K_{1}$ and $K_{2}$ respectively as shown in figure. The cross sectional area of the blocks are the same. The equivalent coefficient of thermal conductivity of the wall between left and right is

86-78

  • [NEET 2017]
  • A

    $\frac{{2{K_1}{K_2}}}{{{K_1} + {K_2}}}$

  • B

    $\frac{{{K_1} + {K_2}}}{3}$

  • C

    $\;\frac{{{K_1}{K_2}}}{{2({K_1} + {K_2})}}$

  • D

    $\;\frac{{{K_1} + {K_2}}}{2}$

Similar Questions

rod of $40\, cm$ in length and temperature difference of ${80^o}C$ at its two ends. $A$ nother rod $B$ of length $60\, cm$ and of temperature difference ${90^o}C$, having the same area of cross-section. If the rate of flow of heat is the same, then the ratio of their thermal conductivities will be

The only possibility of heat flow in a thermos flask is through its cork which is $75 cm^2$ in area and $5 cm$ thick. Its thermal conductivity is $0.0075 cal/cmsec^oC$. The outside temperature is$ 40^oC$ and latent heat of ice is $80 cal g^{-1}$. Time taken by $500 g$ of ice at $0^oC$ in the flask to melt into water at $0^oC$ is ....... $hr$

In Searle's method for finding conductivity of metals, the temperature gradient along the bar

Two identical rods of copper and iron are coated with wax uniformly. When one end of each is kept at temperature of boiling water, the length upto which wax melts are $8.4cm$ and $4.2cm$ respectively. If thermal conductivity of copper is $0.92$ , then thermal conductivity of iron is

Value of temperature gradient is $80\,^oC/m$ on a rod of $0.5\,m$ length. Temperature of hot end is $30\,^oC$, then what is the temperature of cold end ?