A vertex of square is $(3, 4)$ and diagonal $x + 2y = 1,$ then the second diagonal which passes through given vertex will be
$2x - y + 2 = 0$
$x + 2y = 11$
$2x - y = 2$
None of these
If a variable line drawn through the point of intersection of straight lines $\frac{x}{\alpha } + \frac{y}{\beta } = 1$and $\frac{x}{\beta } + \frac{y}{\alpha } = 1$ meets the coordinate axes in $A$ and $B$, then the locus of the mid point of $AB$ is
Area of the rhombus bounded by the four lines, $ax \pm by \pm c = 0$ is :
Let $\alpha, \beta, \gamma, \delta \in \mathrm{Z}$ and let $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$ and $D(1,2)$ be the vertices of a parallelogram $\mathrm{ABCD}$. If $\mathrm{AB}=\sqrt{10}$ and the points $\mathrm{A}$ and $\mathrm{C}$ lie on the line $3 y=2 x+1$, then $2(\alpha+\beta+\gamma+\delta)$ is equal to
$P (x, y)$ moves such that the area of the triangle formed by $P, Q (a , 2 a)$ and $R (- a, - 2 a)$ is equal to the area of the triangle formed by $P, S (a, 2 a)\,\,\, \&\,\, \,T (2 a, 3 a)$. The locus of $'P'$ is a straight line given by :
The area of the triangle bounded by the straight line $ax + by + c = 0,\,\,\,\,(a,b,c \ne 0)$ and the coordinate axes is