A uniformly charged ring of radius $3a$ and total charge $q$ is placed in $xy-$ plane centered at origin. A point charge $q$ is moving towards the ring along the $z-$ axis and has speed $v$ at $z = 4a$. The minimum value of $v$ such that it crosses the origin is
$\sqrt {\frac{2}{m}} {\left( {\frac{1}{5}\frac{{{q^2}}}{{4\pi { \in _0}a}}} \right)^{1/2}}$
$\sqrt {\frac{2}{m}} {\left( {\frac{1}{15}\frac{{{q^2}}}{{4\pi { \in _0}a}}} \right)^{1/2}}$
$\sqrt {\frac{2}{m}} {\left( {\frac{4}{15}\frac{{{q^2}}}{{4\pi { \in _0}a}}} \right)^{1/2}}$
$\sqrt {\frac{2}{m}} {\left( {\frac{2}{15}\frac{{{q^2}}}{{4\pi { \in _0}a}}} \right)^{1/2}}$
Consider a spherical shell of radius $R$ with a total charge $+ Q$ uniformly spread on its surface (centre of the shell lies at the origin $x=0$ ). Two point charges $+q$ and $-q$ are brought, one after the other from far away and placed at $x=-a / 2$ and $x=+a / 2( < R)$, respectively. Magnitude of the work done in this process is
A square of side ‘$a$’ has charge $Q$ at its centre and charge ‘$q$’ at one of the corners. The work required to be done in moving the charge ‘$q$’ from the corner to the diagonally opposite corner is
In the following diagram the work done in moving a point charge from point $P$ to point $A, B$ and $C$ is respectively as $W_A,\, W_B$ and $W_C$, then (there is no charge nearby)
A point charge $q$ is surrounded by eight identical charges at distance $r$ as shown in figure. How much work is done by the forces of electrostatic repulsion when the point charge at the centre is removed to infinity?
Two charges $-q$ each are separated by distance $2d$. A third charge $+ q$ is kept at mid point $O$. Find potential energy of $+ q$ as a function of small distance $x$ from $O$ due to $-q$ charges. Sketch $P.E.$ $v/s$ $x$ and convince yourself that the charge at $O$ is in an unstable equilibrium.