A structural steel rod has a radius of $10\,mm$ and length of $1.0\,m.$ A $100\,kN$ force stretches it along its length . Young's modulus of structural steel is $2 \times 10^{11}\,Nm^{-2}.$ The percentage strain is about ....... $\%$
$0.16$
$0.32$
$0.08$
$0.24$
If the density of the material increases, the value of Young's modulus
Four identical hollow cylindrical columns of mild steel support a big structure of mass $50,000 \;kg$. The inner and outer radii of each column are $30$ and $60\; cm$ respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.
In an experiment, brass and steel wires of length $1\,m$ each with areas of cross section $1\,mm^2$ are used. The wires are connected in series and one end of the combined wire is connected to a rigid support and other end is subjected to elongation. The stress requires to produced a new elongation of $0.2\,mm$ is [Given, the Young’s Modulus for steel and brass are respectively $120\times 10^9\,N/m^2$ and $60\times 10^9\,N/m^2$ ]
The ratio of diameters of two wires of same material is $n : 1$. The length of wires are $4\, m$ each. On applying the same load, the increase in length of thin wire will be
Each of three blocks $P$, $Q$ and $R$ shown in figure has a mass of $3 \mathrm{~kg}$. Each of the wire $A$ and $B$ has cross-sectional area $0.005 \mathrm{~cm}^2$ and Young's modulus $2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$. Neglecting friction, the longitudinal strain on wire $B$ is____________ $\times 10^{-4}$. $\left(\right.$ Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ )