A square frame of side I carries a current $i$. The magnetic field at its centre is $B$. The same current is passed through a circular coil having the same perimeter as the square. The field at the centre of the circular coil is $B^{\prime}$. The ratio of $\frac{B}{B^{\prime}}$ is
$\frac{8 \sqrt{2}}{\pi^2}$
$\frac{8 \sqrt{2}}{\pi^3}$
$\frac{8 \sqrt{2}}{\pi}$
$\frac{4 \sqrt{2}}{\pi^2}$
The magnetic field at the centre of a circular current carrying-conductor of radius $r$ is $B_c$. The magnetic field on its axis at a distance $r$ from the centre is $B_a$. The value of $B_c$ : $B_a$ will be
Two circular coils $1$ and $2$ are made from the same wire but the radius of the $1^{st}$ coil is twice that of the $2^{nd}$ coil. What is the ratio of potential difference in volts should be applied across them so that the magnetic field at their centres is the same?
A battery is connected between two points $A$ and $B$ on the circumference of a uniform conducting ring of radius $r$ and resistance $R$. One of the arcs $AB$ of the ring subtends an angle $\theta $ at the centre. The value of the magnetic induction at the centre due to the current in the ring is
Two concentric coils each of radius equal to $2\pi \,{\rm{ }}cm$ are placed at right angles to each other. $3$ $ampere$ and $4$ $ampere$ are the currents flowing in each coil respectively. The magnetic induction in $Weber/{m^2}$ at the centre of the coils will be $({\mu _0} = 4\pi \times {10^{ - 7}}\,Wb/A.m)$
A very long conducting wire is bent in a semicircular shape from $A$ to $B$ as shown in figure. The magnetic field at point $P$ for steady current configuration is given by: