A small square loop of wire of side $\ell$ is placed inside a large square loop of wire of side $L$ $\left(\mathrm{L}=\ell^2\right)$. The loops are coplanar and therr centers coinside. The value of the mutual inductance of the system is $\sqrt{\mathrm{x}} \times 10^{-7} \mathrm{H}$, where X =___

  • [JEE MAIN 2024]
  • A

    $120$

  • B

    $125$

  • C

    $128$

  • D

    $130$

Similar Questions

$A$ long straight wire is placed along the axis of a circular ring of radius $R$. The mutual inductance of this system is

Two coils have a mutual inductance $0.005\,H$ . The current changes in the first coil The current changes in the first coil according to the equation $I = I_0 sin\,\omega t$ , where $I_0 = 10\,A$ and $\omega  = 100\pi \,rad/s$ . The maximum value of $emf$ in the second coil will be

$(a)$ Obtain an expression for the mutual inductance between a long straight wire and a square loop of side $a$ as shown in Figure.

$(b)$ Now assume that the straight wire carries a current of $50\; A$ and the loop is moved to the right with a constant velocity, $v=10 \;m / s$ Calculate the induced $emf$ in the loop at the instant when $x=0.2\; m$ Take $a=0.1\; m$ and assume that the loop has a large resistance.

Two circuits have coefficient of mutual induction of $0.09$ $henry$. Average $e.m.f$. induced in the secondary by a change of current from $0$ to $20$ $ampere$ in $0.006$ $second$ in the primary will be......$V$

A circular loop ofradius $0.3\ cm$ lies parallel to amuch bigger circular loop ofradius $20\ cm$. The centre of the small loop is on the axis of the bigger loop. The distance between their centres is $15\ cm$. If a current of $2.0\ A$ flows through the smaller loop, then the flux linked with bigger loop is

  • [JEE MAIN 2013]