$A$ long straight wire is placed along the axis of a circular ring of radius $R$. The mutual inductance of this system is

  • A

    $\frac{{{\mu _0}R}}{2}$

  • B

    $\frac{{{\mu _0}\pi R}}{2}$

  • C

    $\frac{{{\mu _0}}}{2}$

  • D

    $0$

Similar Questions

The mutual inductance between a primary and secondary circuits is $0.5 \,H$. The resistances of the primary and the secondary circuits are $20\,\Omega$ and $5\,\Omega $ respectively. To generate a current of $0.4 \,A$ in the secondary, current in the primary must be changed at the rate of.....$A/s$

Explain mutual induction and derive equation of mutual $\mathrm{emf}$.

In a transformer, the coefficient of mutual inductance between the primary and the secondary coil is $0.2 \,henry$. When the current changes by $5$ $ampere/second$ in the primary, the induced $e.m.f$. in the secondary will be......$V$

There are $10$ turns in coil $M$ and $15$ turns in coil $N$ . If a current of $2\ A$ is passed through coil $M$ then the flux linked with coil $N$ is $1.8 × 10^{-3}\ Wb$ . If a current of $3\ A$ is passed through coil $N$ then flux linked with coil $M$ is

$A$ small coil of radius $r$ is placed at the centre of $a$ large coil of radius $R,$ where $R > > r$. The coils are coplanar. The coefficient of mutual inductance between the coils is