A series combination of $n_1$ capacitors, each of value $C_1$, is charged by a source of potential difference $4V$. When another parallel combination of $n_2$ capacitors, each of value $C_2$, is charged by a source of potential difference $V$ , it has the same (total) energy stored in it, as the first combination has. The value of $C_2$ , in terms of $C_1$, is then
$\frac {2C_1}{n_1n_2}$
$16\frac{{{n_2}}}{{{n_1}}}{C_1}$
$2\frac{{{n_2}}}{{{n_1}}}{C_1}$
$\frac {16C_1}{n_1n_2}$
A parallel plate condenser with plate area $A$ and separation $d$ is filled with two dielectric materials as shown in the figure. The dielectric constants are $K_1$ and $K_2$ respectively. The capacitance will be
Two capacitors $C_1$ and $C_2$ are are charged to $120\, V$ and $200\, V$ respectively. It is found that by connecting them together the potential on each one can be made zero . Then
A series combination of $n_1$ capacitors, each of value $C_1$, is charged by a source of potential difference $4\,V$. When another parallel combination $n_2$ capacitors, each of value $C_2$, is charged by a source of potential difference $V$, it has the same (total) energy store in it, as the first combination has. The value of $C_2$, in terms of $C_1$, is then
A negative charged particle is released from rest in a uniform electric field. The electric potential energy of charge
A parallel plate capacitor with air between the plates has a capacitance of $9\, pF$. The separation between its plates is $'d'$. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $K_1=3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $K_2 = 6$ and thickness $\frac{2d}{3}$. Capacitance of the capacitor is now....$pF$