A scientist performs an experiment in order to measure a certain physical quantity and takes $100$ observations. He repeats the same experiment and takes $400$ observations. By doing so,

  • A

    the possible error remains same.

  • B

    the possible error is doubled.

  • C

    the possible error is halved.

  • D

    the possible error is reduced to one fourth.

Similar Questions

Two resistors of resistances $R_{1}=100 \pm 3$ $ohm$ and $R_{2}=200 \pm 4$ $ohm$ are connected $(a)$ in series, $(b)$ in parallel. Find the equivalent resistance of the $(a)$ series combination, $(b)$ parallel combination. Use for $(a)$ the relation $R=R_{1}+R_{2}$ and for $(b)$ $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ and $\frac{\Delta R^{\prime}}{R^{\prime 2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$

If the error in the measurement of radius of a sphere is $2\%$ then the error in the determination of volume of the sphere will be ........ $\%$

  • [AIPMT 2008]

A physical quantity $P$ is given by $P= \frac{{{A^3}{B^{\frac{1}{2}}}}}{{{C^{ - 4}}{D^{\frac{3}{2}}}}}$. The quantity which brings in the maximum percentage error in $P$ is

The least count of stop watch is $\frac{1}{5}\,second$. The time of $20$ oscillations of pendulum is measured to be $25\,seconds$. Then percentage error in the measurement of time will be.......... $\%$

A physical quantity $y$ is represented by the formula $y=m^{2}\, r^{-4}\, g^{x}\,l^{-\frac{3}{2}}$. If the percentage error found in $y, m, r, l$ and $g$ are $18,1,0.5,4$ and $p$ respectively, then find the value of $x$ and $p$.

  • [JEE MAIN 2021]