A rod of length $L$ leans against a smooth vertical wall while its other end is on a smooth floor. The end that leans against the wall moves uniformly vertically downward. Select the correct alternative
The speed of lower end increases at a constant rate
The speed of the lower end decreases but never becomes zero
The speed of the lower end gets smaller and smaller and vanishes when the upper end touches the ground
The speed of the lower end remain constant till upper end touches the ground
Two blocks of same mass $(4\ kg)$ are placed according to diagram. Initial velocities of bodies are $4\ m/s$ and $2\ m/s$ and the string is taut. Find the impulse on $4\ kg$ when the string again becomes taut .......... $N-s$
If pulleys shown in the diagram are smooth and massless and $a_1$ and $a_2$ are acceleration of blocks of mass $4 \,kg$ and $8 \,kg$ respectively, then
The velocity of end ' $A$ ' of rigid rod placed between two smooth vertical walls moves with velocity ' $u$ ' along vertical direction. Find out the velocity of end ' $B$ ' of that rod, rod always remains in constant with the vertical walls.
A ladder rests against a frictionless vertical wall, with its upper end $6\,m$ above the ground and the lower end $4\,m$ away from the wall. The weight of the ladder is $500 \,N$ and its C. G. at $1/3^{rd}$ distance from the lower end. Wall's reaction will be, (in Newton)
Acceleration of system is :-