Two blocks of same mass $(4\ kg)$ are placed according to diagram. Initial velocities of bodies are $4\ m/s$ and $2\ m/s$ and the string is taut. Find the impulse on $4\ kg$ when the string again becomes taut .......... $N-s$
$24$
$6$
$4$
$2$
Find velocity of block ' $B$ ' at the instant shown in figure $........\,m/s$
A man is slipping on a frictionless inclined plane and a bag falls down from the same height. Then the velocity of both is related as
Three blocks $A, B$ and $C$ are suspended as shown in the figure. Mass of each blocks $A$ and $C$ is $m$. If system is in equilibrium and mass of $B$ is $M$, then :
A uniform metal chain of mass $m$ and length ' $L$ ' passes over a massless and frictionless pulley. It is released from rest with a part of its length ' $l$ ' is hanging on one side and rest of its length ' $L -l$ ' is hanging on the other side of the pulley. At a certain point of time, when $l=\frac{L}{x}$, the acceleration of the chain is $\frac{g}{2}$. The value of $x$ is ........
Three blocks of masses $m_1=4 \,kg , m_2=2 \,kg , m_3=4 \,kg$ are connected with ideal strings passing over a smooth. massless pulley as shown in figure. The acceleration of blocks will be ......... $m / s ^2$ $\left(g=10 \,m / s ^2\right)$