A proton and a deutron both having the same kinetic energy, enter perpendicularly into a uniform magnetic field $B$. For motion of proton and deutron on circular path of radius ${R_p}$ and ${R_d}$ respectively, the correct statement is
${R_d} = \sqrt 2 \,{R_p}$
${R_d} = {R_p}/\sqrt 2 $
${R_d} = {R_p}$
${R_d} = 2{R_p}$
A rectangular region $A B C D$ contains a uniform magnetic field $B_0$ directed perpendicular to the plane of the rectangle. A narrow stream of charged particles moving perpendicularly to the side $AB$ enters this region and is ejected through the adjacent side $B C$ suffering a deflection through $30^{\circ}$. In order to increase this deflection to $60^{\circ}$, the magnetic field has to be
A proton accelerated by a potential difference $500\;KV$ moves though a transverse magnetic field of $0.51\;T$ as shown in figure. The angle $\theta $through which the proton deviates from the initial direction of its motion is......$^o$
A long solenoid has $100\,turns/m$ and carries current $i.$ An electron moves with in the solenoid in a circle of radius $2·30\,cm$ perpendicular to the solenoid axis. The speed of the electron is $0·046\,c$ ($c =$ speed of light). Find the current $i$ in the solenoid (approximate).....$A$
A uniform electric field and a uniform magnetic field are produced, pointed in the same direction. An electron is projected with its velocity pointing in the same direction
A proton and a deutron ( $\mathrm{q}=+\mathrm{e}, m=2.0 \mathrm{u})$ having same kinetic energies enter a region of uniform magnetic field $\vec{B}$, moving perpendicular to $\vec{B}$. The ratio of the radius $r_d$ of deutron path to the radius $r_p$ of the proton path is: