A particle of unit mass undergoes one dimensional motion such that its velocity varies according to $ v(x)= \beta {x^{ - 2n}}$, where $\beta$ and $n$ are constants and $x$ is the position of the particle. The acceleration of the particle as a function of $x$, is given by
$-2n$${\beta ^2}{X^{ - 2n - 1}}$
$-2n$${\beta ^2}{X^{ - 4n - 1}}$
$-2n$${\beta ^2}{X^{ - 2n + 1}}$
$-2n$${\beta ^2}{X^{ - 4n + 1}}$
A particle moves along $x$-axis as $x=4(t-2)+a(t-2)^2$. Which of the following statements is true?
Define acceleration , average acceleration and instantaneous acceleration.
The area under acceleration-time graph gives