A parallel plate capacitor with plate area $A$ and plate separation $d$ is filled with a dielectric material of dielectric constant $K =4$. The thickness of the dielectric material is $x$, where $x < d$.
Let $C_1$ and $C_2$ be the capacitance of the system for $x =\frac{1}{3} d$ and $x =\frac{2 d }{3}$, respectively. If $C _1=2 \mu F$ the value of $C _2$ is $........... \mu F$
$4$
$5$
$2$
$3$
A parallel plate capacitor having capacitance $12\, pF$ is charged by a battery to a potential difference of $10\, V$ between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant $6.5$ is slipped between the plates. The work done by the capacitor on the slab is.......$pJ$
A parallel plate air capacitor is charged and then isolated. When a dielectric material is inserted between the plates of the capacitor, then which of the following does not change
Three different dielectrics are filled in a parallel plate capacitor as shown. What should be the dielectric constant of a material, which when fully filled between the plates produces same capacitance?
The capacitance of a parallel plate capacitor is $5\, \mu F$ . When a glass slab of thickness equal to the separation between the plates is introduced between the plates, the potential difference reduces to $1/8$ of the original value. The dielectric constant of glass is
What is linear isotropic dielectric ?