A parallel plate capacitor is of area $6\, cm^2$ and a separation $3\, mm$. The gap is filled with three dielectric materials of equal thickness (see figure) with dielectric constants $K_1 = 10, K_2 = 12$ and $K_3 = 14$. The dielectric constant of a material which when fully inserted in above capacitor, gives same capacitance would be
$4$
$14$
$12$
$36$
A parallel plate capacitor with air between the plates has a capacitance of $8 \;pF \left(1 \;pF =10^{-12} \;F \right) .$ What will be the capacitance (in $pF$) if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant $6 ?$
A parallel plate capacitor is made of two plates of length $l$, width $w$ and separated by distance $d$. A dielectric slab ( dielectric constant $K$) that fits exactly between the plates is held near the edge of the plates. It is pulled into the capacitor by a force $F = -\frac{{\partial U}}{{\partial x}}$ where $U$ is the energy of the capacitor when dielectric is inside the capacitor up to distance $x$ (See figure). If the charge on the capacitor is $Q$ then the force on the dielectric when it is near the edge is
While a capacitor remains connected to a battery and dielectric slab is applied between the plates, then
A parallel plate capacitor having crosssectional area $A$ and separation $d$ has air in between the plates. Now an insulating slab of same area but thickness $d/2$ is inserted between the plates as shown in figure having dielectric constant $K (=4) .$ The ratio of new capacitance to its original capacitance will be,
When air in a capacitor is replaced by a medium of dielectric constant $K$, the capacity