A mass m performs oscillations of period $T$ when hanged by spring of force constant $K$. If spring is cut in two parts and arranged in parallel and same mass is oscillated by them, then the new time period will be

94-25

  • A

    $2T$

  • B

    $T$

  • C

    $\frac{T}{{\sqrt 2 }}$

  • D

    $\frac{T}{2}$

Similar Questions

A $1 \,kg$ block attached to a spring vibrates with a frequency of $1\, Hz$ on a frictionless horizontal table. Two springs identical to the original spring are attached in parallel to an $8\, kg$ block placed on the same table. So, the frequency of vibration of the $8\, kg$ block is ..... $Hz$

  • [JEE MAIN 2017]

A $5\; kg$ collar is attached to a spring of spring constant $500\;N m ^{-1} .$ It slides without friction over a hortzontal rod. The collar is displaced from its equilibrium position by $10.0\; cm$ and released. Calculate

$(a)$ the period of oscillation.

$(b)$ the maximum speed and

$(c)$ maximum acceleration of the collar.

A force of $20\,dyne$ applied to the end of spring increase its length of $1\, mm$, then force constant will be what ?

A $2\, Kg$ block moving with $10\, m/s$ strikes a spring of constant $\pi ^2 N/m$ attached to $2\, Kg$ block at rest kept on a smooth floor, the velocity of the rear $2\, kg$ block after it separates from the spring will be ..... $m/s$

Spring of spring constant $1200\, Nm^{-1}$ is mounted on a smooth frictionless surface and attached to a block of mass $3\, kg$. Block is pulled $2\, cm$ to the right and released. The angular frequency of oscillation is .... $ rad/sec$