$m$ દળને શિરોલંબ નહિવત દળ ધરાવતી સ્પ્રિંગ સાથે લટકાવેલ છે, આ તંત્ર $n$ આવૃતિથી દોલનો કરે છે. જો $4m$ દળને સમાન સ્પ્રિંગ સાથે લટાવવામાં આવે, તો તંત્રની આવૃતિ કેટલી થાય?
$\frac{n}{4}$
$4n$
$\frac{n}{2}$
$2n$
સાદા લોલક અને લોલકના લંબાઈની વ્યાખ્યા આપો.
એક ઘડિયાળ $S$ એક સ્પ્રિંગના દોલનોને આધારે છે. જ્યારે બીજી ઘડિયાળ $P$ સાદા લોલકને આધારે છે. બંને ઘડિયાળ પૃથ્વીના દર મુજબ જ ફરે છે. તે બંનેને પૃથ્વી જેટલી જ ઘનતા પરંતુ પૃથ્વીથી બે ગણી ત્રિજ્યા ધરાવતા ગ્રહ પર લઈ જવામાં આવે તો ક્યું વિધાન સત્ય છે ?
સ્પ્રિંગના છેડે લટકાવેલ પદાર્થના દોલનો સ.આ. હોવા માટેની શરત લખો.
આકૃતિનાં દર્શાવ્યા મુજબની જ પૃથ્વીની સપાટીને સમક્ષિતિજ રહે તેમ ગોઠવવામાં આવેલ છે. આ સ્થિતિમાં સ્પ્રિંગો પર કોઈ તણાવ નથી સામાન્ય સ્થિતિમાં છે. જો ડાબી તરફનું દળ ડાબી તરફ અને જમણી તરફનું દળ જમણી તરફ સરખા અંતેર ખેંચીને છોડવામાં આવે છે. જો પરિણામી અથડામણ સ્થિતિ સ્થાપક હોય તો આ પ્રણાલીના દોલનોનો આવર્તકાળ કેટલો હશે ?
એક $500 \,N \,m^{-1}$ સ્પ્રિંગ અચળાંક ધરાવતી સ્પ્રિંગની સાથે $5 \,kg$ નો કૉલર (પટ્ટો) જોડાયેલ છે. તે ઘર્ષણ વગર સમક્ષિતિજ સળિયા પર સરકે છે. આ કૉલર તેના સંતુલન સ્થાનેથી $10.0\, cm$ સ્થાનાંતરિત થઈ અને મુક્ત થાય છે. આ કૉલર માટે
$(a)$ દોલનોનો આવર્તકાળ
$(b)$ મહત્તમ ઝડપ અને
$(e)$ મહત્તમ પ્રવેગની ગણતરી કરો.